IEEE Systems Journal | 2019

On the Performance of the Uplink Satellite Multiterrestrial Relay Networks With Hardware Impairments and Interference

 
 
 
 
 
 
 

Abstract


In this paper, we consider an uplink satellite multiterrestrial relay network, which employs a single-antenna user to communicate with a satellite via multiple decode-and-forward (DF) terrestrial relays. Due to the spectrum sharing policy, terrestrial relays are interfered by cochannel interference (CCI). For inevitable radio frequency (RF) front-end imperfections, the interconnected nodes of the whole network are always impaired by inherent hardware impairments (HIs). Specifically, in order to improve the overall system performance, a partial relay selection scheme is used to enhance the system performance by improving the spatial diversity. On this foundation, we have derived the closed-form expressions for the outage probability (OP) and throughput of the considered system, where both the satellite and terrestrial channels are under independent nonidentical distributions. To get better insights at high signal-to-noise-ratios (SNRs), the asymptotic behaviors for the system performance are also derived. From the asymptotic results, the impacts of CCI and the HIs on the system performance are quantitatively analyzed. Especially, the OP and throughput will have bounds when the system is under HIs. Monte Carlo (MC) simulation results corroborate the theoretical analysis and illustrate the joint effects of CCI and HIs on the considered system.

Volume 13
Pages 2297-2308
DOI 10.1109/JSYST.2019.2901800
Language English
Journal IEEE Systems Journal

Full Text