IEEE Robotics and Automation Letters | 2021

Control and Evaluation of Body Weight Support Walker for Overground Gait Training

 
 
 

Abstract


Gait rehabilitation training under robot-assisted partial Body Weight Support (BWS) is a promising technique that helps patients who suffer from a traumatic or congenital brain injury like stroke or cerebral palsy to become independent in daily life activities. In recent years, robotic BWS systems have been widely studied, where the BWS is provided by the robot while the user walks on devices fixed to the environment such as treadmills, thereby gaining functional benefits such as improved gait symmetry and increased walking speed. On the other hand, mobile BWS robots that allow conventional overground walking with well-designed control strategies have been less researched, limiting the widespread adoption of robotic rehabilitation because of the cost effectiveness of fixed robotic devices and poor portability. To address this problem, in our previous study, we developed a mobile BWS walker that allows for overground walking under variable levels of BWS. In this letter, we introduce a system architecture that integrates the walker with a pair of instrumented shoes and discuss different system control strategies including static and variable BWS control. When walking under Static-BWS (SBWS), the subject walks while a constant portion of his/her weight is supported, which might cause an unnatural gait. Using a Variable-BWS (VBWS), the provided BWS can be adjusted according to human s gait events to provide a more natural gait. This letter describes the system architecture, as well as experiments with able subjects that demonstrate the effectiveness of both the SBWS and VBWS control algorithms in relieving part of the subjects’ body weight. Specifically, by synchronizing the controlled BWS with human gait events, users were able to walk more naturally, particularly under a high level of BWS.

Volume 6
Pages 4632-4639
DOI 10.1109/LRA.2021.3068691
Language English
Journal IEEE Robotics and Automation Letters

Full Text