IEEE Wireless Communications Letters | 2021

Non-Orthogonal Wireless Backhaul Design for Cell-Free Massive MIMO: An Integrated Computation and Communication Approach

 
 
 

Abstract


In cell-free massive multiple-input-multiple-output system with wireless backhaul, the distributed access points (APs) and the center processing unit (CPU) are connected via wireless links. Hence, the limited backhaul bandwidth becomes a critical challenge to uplink transmission. To save the bandwidth while maintaining high transmission accuracy, we propose to deploy non-orthogonal transmissions in backhaul link and jointly optimize the detection computation mappings at the APs and the CPU under the non-orthogonal backhaul. First, we formulate the joint design problem subject to backhaul bandwidth constraint aiming at a better end-to-end transmission accuracy. Then, the non-trivial problem is parameterized and solved with a novel model-driven deep neural network, where wireless backhaul is integrated as a neural computing layer by exploiting the reciprocity between non-orthogonal transmission and additive operation. Evaluations show that, the proposed integration method outperforms the conventional approaches by a margin in both backhaul bandwidth cost and the symbol error rate.

Volume 10
Pages 281-285
DOI 10.1109/LWC.2020.3028111
Language English
Journal IEEE Wireless Communications Letters

Full Text