IEEE Transactions on Automatic Control | 2019

Low-Complexity Tracking Control of Strict-Feedback Systems With Unknown Control Directions

 
 

Abstract


This paper focuses on the problem of output tracking with prescribed transient and steady-state performance for strict-feedback systems with unknown nonlinear functions and unmatched disturbances. In lieu of Nussbaum gain techniques, parameter estimation algorithms and switching control strategies, a continuous static low-complexity control solution is provided by means of a novel combination of smooth orientation functions and error transformation functions. The proposed method possesses inherent robustness against model uncertainties, disturbances, and virtual control signal derivatives, thus eliminating the needs to introduce extra robust control schemes and compute analytic derivatives. Comparative simulation results further illustrate the above theoretical findings.

Volume 64
Pages 5175-5182
DOI 10.1109/TAC.2019.2910738
Language English
Journal IEEE Transactions on Automatic Control

Full Text