IEEE Transactions on Biomedical Engineering | 2019

Reliable Label-Efficient Learning for Biomedical Image Recognition

 
 
 
 

Abstract


The use of deep neural networks for biomedical image analysis requires a sufficient number of labeled datasets. To acquire accurate labels as the gold standard, multiple observers with specific expertise are required for both annotation and proofreading. This process can be time-consuming and labor-intensive, making high-quality, and large-annotated biomedical datasets difficult. To address this problem, we propose a deep active learning framework that enables the active selection of both informative queries and reliable experts. To measure the uncertainty of the unlabeled data, a dropout-based strategy is integrated with a similarity criterion for both data selection and random error elimination. To select the reliable labelers, we adopt an expertise estimator to learn the expertise levels of labelers via offline-testing and online consistency evaluation. The proposed method is applied to classification tasks on two types of medical images including confocal endomicroscopy images and gastrointestinal endoscopic images. The annotations are acquired from multiple labelers with diverse levels of expertise. The experiments demonstrate the efficiency and promising performance of the proposed method compared to a set of baseline methods.

Volume 66
Pages 2423-2432
DOI 10.1109/TBME.2018.2889915
Language English
Journal IEEE Transactions on Biomedical Engineering

Full Text