IEEE Transactions on Communications | 2019

Design and Provision of Traffic Grooming for Optical Wireless Data Center Networks

 
 
 
 

Abstract


Traditional wired data center networks (DCNs) suffer from cabling complexity, lack flexibility, and are limited by the speed of digital switches. In this paper, we alternatively develop a top-down traffic grooming (TG) approach to the design and provisioning of mission-critical optical wireless DCNs. While switches are modeled as hybrid optoelectronic cross-connects, links are modeled as wavelength division multiplexing capable free-space optic channels. Using the standard TG terminology, we formulate the optimal mixed-integer TG problem considering the virtual topology, flow conversation, connection topology, non-bifurcation, and capacity constraints. Thereafter, we develop a fast yet efficient sub-optimal solution, which grooms mice flows (MFs), mission-critical flows (CFs), and forward on predetermined rack-to-rack (R2R) lightpaths. On the other hand, elephant flows (EFs) are forwarded over dedicated server-to-server express lightpaths whose routes and capacity are dynamically determined based on the availability of wavelength and capacity. To prioritize the CFs, we consider low and high-priority queues and analyze the delay characteristics such as waiting times, maximum hop counts, and blocking probability. As a result of grooming, the sub-wavelength traffic and adjusting the wavelength capacities, numerical results show that the proposed solutions can achieve significant performance enhancement by utilizing the bandwidth more efficiently, completing the flows faster than delay sensitivity requirements, and avoiding the traffic congestion by treating EFs and MFs separately.

Volume 67
Pages 2245-2259
DOI 10.1109/TCOMM.2018.2885808
Language English
Journal IEEE Transactions on Communications

Full Text