IEEE Transactions on Geoscience and Remote Sensing | 2021

Bistatic-Range-Doppler-Aperture Wavenumber Algorithm for Forward-Looking Spotlight SAR With Stationary Transmitter and Maneuvering Receiver

 
 
 
 
 
 

Abstract


Bistatic forward-looking spotlight synthetic aperture radar with stationary transmitter and maneuvering receiver (STMR-BFSSAR) is a promising sensor for various applications, such as the automatic navigation and landing of maneuvering vehicles. Because of the bistatic forward-looking configuration and the receiver’s maneuvers, conventional image formation algorithms suffer from high computational complexity or small size of a well-focused scene if applied to STMR-BFSSAR. In this article, we propose a wavenumber-domain algorithm for STMR-BFSSAR image formation, which is termed the bistatic-range-Doppler-aperture wavenumber algorithm (BDWA). First, a novel range model in bistatic-range and Doppler-aperture coordinate space instead of conventional Cartesian coordinate space is established by employing the elliptic polar coordinate system and the method of series reversion. The novel range model not only makes the echo’s samples to be regular along the direction of the bistatic-range wavenumber axis but also constructs a curved wavefront close to the true wavefront. Second, an operation termed wavenumber-domain gridding is conceived to regularize the echo’s samples along the Doppler-aperture wavenumber axis, which can be implemented by 1-D interpolation. The proposed algorithm significantly outperforms the conventional algorithms in terms of computational complexity and scene size limits. Both point and distributed targets are simulated for two STMR-BFSSAR systems with different parameters. The simulation results verify the validity and superiority of the proposed BDWA.

Volume 59
Pages 2080-2094
DOI 10.1109/TGRS.2020.3004726
Language English
Journal IEEE Transactions on Geoscience and Remote Sensing

Full Text