IEEE Transactions on Industry Applications | 2019

Survivability of Prime-Mover Powered Inverter-Based Distributed Energy Resources During Microgrid Islanding

 
 
 
 
 

Abstract


Inverter-based distributed energy resources (DERs) can supply high-quality ac power in a microgrid due to their fast dynamic response. To achieve high reliability in an islanded microgrid, they are normally operated as voltage-controlled sources. However, the net load supplied by voltage-controlled inverter-based DERs can exceed their rated capacity, particularly during their transition from the grid-connected operation mode. Therefore, a comprehensive analysis of the DER survivability for overload conditions is crucial. Several experimental tests were conducted at the Consortium for Electric Reliability Technology Solutions Microgrid Testbed on the prime-mover powered inverter-based DER for learning about its survivability during overload conditions. In this paper, a thorough investigation of the inverter-based DER s survivability is carried out based on the prime-mover stalling phenomenon. Analytical expressions are derived for key design parameters of load-shedding algorithms, such as time-to-threshold frequency, maximum time delay, and maximum survivability time. The theoretical estimates are validated with the results obtained from the experimental testing. Furthermore, the minimum load-shedding estimate is determined for any prime-mover powered inverter-based DER to survive a transient overload condition.

Volume 55
Pages 1214-1224
DOI 10.1109/TIA.2018.2885047
Language English
Journal IEEE Transactions on Industry Applications

Full Text