IEEE Transactions on Industrial Informatics | 2019

A Survey on Model-Based Distributed Control and Filtering for Industrial Cyber-Physical Systems

 
 
 
 

Abstract


Industrial cyber-physical systems (CPSs) are large-scale, geographically dispersed, and life-critical systems, in which lots of sensors and actuators are embedded and networked together to facilitate real-time monitoring and closed-loop control. Their intrinsic features in geographic space and resources put forward to urgent requirements of reliability and scalability for designed filtering or control schemes. This paper presents a review of the state-of-the-art of distributed filtering and control of industrial CPSs described by differential dynamics models. Special attention is paid to sensor networks, manipulators, and power systems. For real-time monitoring, some typical Kalman-based distributed algorithms are summarized and their performances on calculation burden and communication burden, as well as scalability, are discussed in depth. Then, the characteristics of non-Kalman cases are further disclosed in light of constructed filter structures. Furthermore, the latest development is surveyed for distributed cooperative control of mobile manipulators and distributed model predictive control in industrial automation systems. By resorting to droop characteristics, representative distributed control strategies classified by controller structures are systematically summarized for power systems with the requirements of power sharing and voltage and frequency regulation. In addition, distributed security control of industrial CPSs is reviewed when cyber-attacks are taken into consideration. Finally, some challenges are raised to guide the future research.

Volume 15
Pages 2483-2499
DOI 10.1109/TII.2019.2905295
Language English
Journal IEEE Transactions on Industrial Informatics

Full Text