IEEE Transactions on Medical Imaging | 2019

Group-Sparsity-Based Super-Resolution Dipole Orientation Mapping

 
 
 
 
 
 
 
 

Abstract


The dipole orientation of fluorophores could be resolved by fluorescence polarization microscopy (FPM), which in turn reveals structural specificity for the labeled organelles. Conventional FPM can detect only the averaged fluorescence anisotropy collected from dipoles within the diffraction-limited volume. Super-resolution dipole orientation mapping (SDOM) method, which applies sparse deconvolution and least square estimation to fluorescence polarization modulation data, achieves the dipole orientation measurement within a sub-diffraction focal area. However, during SDOM analysis, some pixels with fluorescence signal are not resolved with orientation for relatively small adjusted R2. Here we report group-sparsity-based SDOM (GS-SDOM), which utilizes the relevance of modulation sequences to effectively improve the SDOM reconstruction model. More credible resolved dipole orientations with higher adjusted R2 can be mapped and false positive estimation for local dipole orientation is vitally corrected. In addition to achieving the same spatial super-resolution as SDOM does, GS-SDOM accesses more morphological information with more credible orientations and more accurate local dipole distribution estimation. During the GS-SDOM analysis of actin filaments in mammalian kidney cells, the dipole orientation of fluorescence is detected always parallel to the direction of the actin filaments. Also with dipole orientation information extracted by GS-SDOM, the reconstructed visual circle from intensity dimension is discerned as jointed by double close filaments and 3-dimensional co-localization is accomplished in the intersection of actin filaments.

Volume 38
Pages 2687-2694
DOI 10.1109/TMI.2019.2910221
Language English
Journal IEEE Transactions on Medical Imaging

Full Text