IEEE Transactions on Power Electronics | 2021

Impedance Circuit Model of Grid-Forming Inverter: Visualizing Control Algorithms as Circuit Elements

 
 
 
 
 
 

Abstract


The impedance model is widely used for analyzing power converters. However, the output impedance is an external representation of a converter system, i.e., it compresses the entire dynamics into a single transfer function with internal details of the interaction between states hidden. As a result, there are no programmatic routines to link each control parameter to the system dynamic modes and to show the interactions among them, which makes the designers rely on their experience and heuristic to interpret the impedance model and its implications. To overcome these obstacles, this article proposes a new modeling tool named as impedance circuit model, visualizing the closed-loop power converter as an impedance circuit with discrete circuit elements rather than an all-in-one impedance transfer function. It can reveal the virtual impedance essence of all control parameters at different impedance locations and/or within different frequency bandwidths, and show their interactions and coupling effects. A grid-forming voltage source inverter is investigated as an example, with considering its voltage controller, current controller, control delay, voltage/current $dq$-frame cross-decoupling terms, output-voltage/current feedforward control, droop controllers, and three typical virtual impedances. The proposed modeling tool is validated by frequency-domain spectrum measurement and time-domain step response in simulations and experiments.

Volume 36
Pages 3377-3395
DOI 10.1109/TPEL.2020.3015158
Language English
Journal IEEE Transactions on Power Electronics

Full Text