IEEE Transactions on Smart Grid | 2019

Coupling Load-Following Control With OPF

 
 
 
 

Abstract


In this paper, the optimal power flow (OPF) problem is augmented to account for the costs associated with the load-following control of a power network. Load-following control costs are expressed through the linear quadratic regulator (LQR). The power network is described by a set of nonlinear differential algebraic equations (DAEs). By linearizing the DAEs around a known equilibrium, a linearized OPF that accounts for steady-state operational constraints is formulated first. This linearized OPF is then augmented by a set of linear matrix inequalities that are algebraically equivalent to the implementation of an LQR controller. The resulting formulation, termed LQR-OPF, is a semidefinite program which furnishes optimal steady-state setpoints and an optimal feedback law to steer the system to the new steady state with minimum load-following control costs. Numerical tests demonstrate that the setpoints computed by LQR-OPF result in lower overall costs and frequency deviations compared to the setpoints of a scheme where OPF and load-following control are considered separately.

Volume 10
Pages 2495-2506
DOI 10.1109/TSG.2018.2802723
Language English
Journal IEEE Transactions on Smart Grid

Full Text