IEEE Transactions on Vehicular Technology | 2021

Fundamental Analysis of Vehicular Light Communications and the Mitigation of Sunlight Noise

 
 
 
 
 

Abstract


Intelligent transport systems (ITS) rely upon the connectivity, cooperation and automation of vehicles aimed at the improvement of safety and efficiency of the transport system. Connectivity, which is a key component for the practical implementation of vehicular light communications (VeLC) systems in ITS, must be carefully studied prior to design and implementation. In this paper, we carry out a performance evaluation study on the use of different vehicle taillights (TLs) as the transmitters in a VeLC system. We show that, the transmission coverage field of view and the link span depend on TLs illumination patterns and the transmit power levels, respectively, which fail to meet the typical communication distances in vehicular environments. This paper proposes an infrared-based VeLC system to meet the transmission range in daytimes under Sunlight noise. We show that, at the forward error correction bit error rate limit of 3.8 $ \\times $10−3, the communication distances of the proposed link are 63, 72, and > 89 m compared with 4.5, 5.4 and 6.3 m for BMW s vehicle TL at data rates of 10, 6, and 2 Mbps, respectively.

Volume 70
Pages 5932-5943
DOI 10.1109/TVT.2021.3078576
Language English
Journal IEEE Transactions on Vehicular Technology

Full Text