IEEE Network | 2021

Secure Non-Orthogonal Multiple Access: An Interference Engineering Perspective

 
 
 
 
 
 

Abstract


Non-orthogonal multiple access (NOMA) is an efficient approach that can improve spectrum utilization and support massive connectivity for next-generation wireless networks. However, over a wireless channel, the superimposed NOMA signals are highly susceptible to eavesdropping, potentially leading to severe leakage of confidential information. In this article, we unleash the potential of network interference and exploit it constructively to enhance physi-cal-layer security in NOMA networks. In particular, three different types of network interference, including artificial noise, specifically-designed jamming signals, and inter-user interference, are well engineered to intentionally reduce information leakage while mitigating the effect on signal reception quality of legitimate users, thereby significantly enhancing the transmission security of NOMA. Furthermore, we propose interference engineering strategies for more advanced full-duplex NOMA, intelligent reflecting surface NOMA, cognitive radio NOMA, and multi-cell NOMA networks, and discuss several open research problems and challenges, which could inspire innovative interference engineering designs for secure NOMA communications.

Volume 35
Pages 278-285
DOI 10.1109/mnet.011.2000539
Language English
Journal IEEE Network

Full Text