IEEE transactions on visualization and computer graphics | 2019

Visual Analysis of a Computer-Aided Diagnosis System for Pancreatic Lesions.

 
 
 
 

Abstract


Machine learning is a powerful and effective tool for medical image analysis to perform computer-aided diagnosis (CAD). Having great potential in improving the accuracy of a diagnosis, CAD systems are often analyzed in terms of the final accuracy, leading to a limited understanding of the internal decision process, impossibility to gain insights, and ultimately to skepticism from clinicians. We present a visual analysis approach to uncover the decision-making process of a CAD system for classifying pancreatic cystic lesions. This CAD algorithm consists of two distinct components: random forest (RF), which classifies a set of predefined features, including demographic features, and a convolutional neural network (CNN), which analyzes radiological features of the lesions. We study the class probabilities generated by the RF and the semantical meaning of the features learned by the CNN. We also use an eye tracker to better understand which radiological features are particularly useful for a radiologist to make a diagnosis and to quantitatively compare with the features that lead the CNN to its final classification decision. Additionally, we evaluate the effects and benefits of supplying the CAD system with a case-based visual aid in a second-reader setting.

Volume None
Pages None
DOI 10.1109/tvcg.2019.2947037
Language English
Journal IEEE transactions on visualization and computer graphics

Full Text