Journal of food science | 2021

Enzymatic hydrolysis of black cricket (Gryllus assimilis) proteins positively affects their antioxidant properties.

 
 
 

Abstract


The development of innovative ingredients through biotechnological routes has established insect proteins as an emerging source of bioactive peptides. The current study aimed to evaluate the antioxidant properties of black cricket (Gryllus assimilis) protein hydrolysates produced using the proteases FlavourzymeTM 500L, AlcalaseTM 2.4L, and NeutraseTM 0.8L, either individually or in binary/ternary combinations. The enzymatic hydrolysis promoted an increase of approximately 160% in total antioxidant capacity and 93% in the ferric reducing antioxidant power. The isolated use of the enzyme FlavourzymeTM 500L showed the most prominent positive effect on the antioxidant properties, presenting an IC50 value of 455 and 71\xa0µg/mL for DPPH and ABTS radicals scavenging activities, respectively. This sample was composed mainly of small peptides (MW <\xa03\xa0kDa), in which the antioxidant properties increased after fractionation by ultrafiltration. Gel electrophoresis analysis showed protein hydrolysates composed mainly of polypeptide chains with a mass of less than 14\xa0kDa. Finally, the enzymatic treatment proved to be an efficient process to improve the antioxidant properties of black cricket proteins, increasing the possibility of applying these hydrolysates as bioactive ingredients in food or nutraceutical products. PRACTICAL APPLICATION: Insects represent an alternative source of proteins. Their modification through hydrolysis allows for the acquisition of compounds with great potential in industrial applications, such as functional ingredients or for nutraceutical purposes. The use of our experimental design proved to be an adequate tool for defining the best process conditions required for increasing the attainment of biologically active compounds.

Volume None
Pages None
DOI 10.1111/1750-3841.15576
Language English
Journal Journal of food science

Full Text