Entomologia Experimentalis et Applicata | 2019

Effects of biodiversity in agricultural landscapes on the protective microbiome of insects – a review

 
 

Abstract


Symbiotic bacteria in herbivorous insects can have strong beneficial impacts on their host s survival, including conferring resistance to natural enemies such as parasitoid wasps or pathogens, while also imposing energetic costs on the host, resulting in cost‐benefit trade‐offs. Whether these trade‐offs favour the hosting of symbionts depends on the growth environment of the herbivore. Long‐term experimental grassland studies have shown that increasing plant species richness leads to an increased diversity of associated herbivores and their natural enemies. Such a change in natural enemy diversity, related to changes in plant diversity, could also drive changes in the community of symbionts hosted by the herbivorous insects. Aphids are one model system for studying symbionts in insects, and effects of host‐plant species and diversity on aphid‐symbiont interactions have been documented. Yet, we still understand little of the mechanisms underlying such effects. We review the current state of knowledge of how biodiversity can impact aphid‐symbiont communities and the underlying drivers. Then, we discuss this in the framework of sustainable agriculture, where increased plant biodiversity, in the form of wildflower strips, is used to recruit natural enemies to crop fields for their pest control services. Although aphid symbionts have the potential to reduce biological control effectiveness through conferring protection for the host insect, we discuss how increasing plant and natural enemy biodiversity can mitigate these effects and identify future research opportunities. Understanding how to promote beneficial interactions in ecological systems can help in the development of more sustainable agricultural management strategies.

Volume 167
Pages None
DOI 10.1111/eea.12751
Language English
Journal Entomologia Experimentalis et Applicata

Full Text