Evolution | 2021

Invasion and maintenance of meiotic drivers in populations of ascomycete fungi

 
 
 
 
 
 

Abstract


Meiotic drivers (MDs) are selfish genetic elements that are able to become overrepresented among the products of meiosis. This transmission advantage makes it possible for them to spread in a population even when they impose fitness costs on their host organisms. Whether an MD can invade a population, and subsequently reach fixation or coexist in a stable polymorphism, depends on the one hand on the biology of the host organism, including its life cycle, mating system, and population structure, and on the other hand on the specific fitness effects of the driving allele on the host. Here, we present a population genetic model for spore killing, a type of drive specific to fungi. We show how ploidy level, rate of selfing, and efficiency of spore killing affect the invasion probability of a driving allele and the conditions for its stable coexistence with a nondriving allele. Our model can be adapted to different fungal life cycles, and is applied here to two well‐studied genera of filamentous ascomycetes known to harbor spore‐killing elements, Neurospora and Podospora. We discuss our results in the light of recent empirical findings for these two systems.

Volume 75
Pages None
DOI 10.1111/evo.14214
Language English
Journal Evolution

Full Text