Genes to Cells | 2019

Genetic suppression of collapsin response mediator protein 2 phosphorylation improves outcome in methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐induced Parkinson’s model mice

 
 
 
 
 
 
 
 

Abstract


Parkinson s disease (PD) is a common neurodegenerative disorder characterized by slow and progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Levodopa (l‐Dopa), the current main treatment for PD, supplies dopamine, but it does not prevent neurodegeneration. There is thus no promising remedy for PD. Recent in vitro study showed the increase in the phosphorylation levels of Collapsin Response Mediator Protein 2 (CRMP2) is involved in dopaminergic axon degeneration. In the present study, we report elevation of CRMP2 phosphorylation in dopaminergic neurons in SNc after challenge with the dopaminergic neurotoxin 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP), a common model for PD. Genetic suppression of CRMP2 phosphorylation by mutation of the obligatory Cyclin‐dependent kinase 5 (Cdk5)‐targeted serine‐522 site prevented axonal degradation in the nigrostriatal pathway of transgenic mice. As a result, the degree of MPTP‐induced motor impairment in the rotarod test was suppressed. These results suggest that suppression of CRMP2 phosphorylation may be a novel therapeutic target for PD.

Volume 24
Pages 31 - 40
DOI 10.1111/gtc.12651
Language English
Journal Genes to Cells

Full Text