Ground water | 2021

Post audit of simulated groundwater flow to a short-lived (2019-2020) crater lake at Kīlauea Volcano.

 
 
 
 

Abstract


About 14.5 months after the 2018 eruption and summit collapse of Kīlauea Volcano, Hawai i, liquid water started accumulating in the deepened summit crater, forming a lake that attained 51 m depth before rapidly boiling off on 20 December 2020, when an eruption from the crater wall poured lava into the lake. Modeling the growth of the crater lake at Kīlauea summit is important for assessing the potential for explosive volcanism. Our current understanding of the past 2500\u2009years of eruptive activity at Kīlauea suggests a slight dominance of explosive behavior over effusive. The deepened summit crater and presence of the crater lake in 2019 raised renewed concerns about explosive activity. Groundwater models using hydraulic-property data from a nearby drillhole successfully forecast the timing and rate of lake filling. Here we compare the groundwater-model predictions with observational data through the demise of the crater lake, examine the implications for local water-table configuration, consider the potential role of evaporation and recharge (neglected in previous models), and briefly discuss the energetics of the rapid boil-off. This post audit of groundwater-flow models of Kīlauea summit shows that simple models can sometimes be used effectively to simulate complex settings such as volcanoes.

Volume None
Pages None
DOI 10.1111/gwat.13133
Language English
Journal Ground water

Full Text