Journal of cellular and molecular medicine | 2021

GPX7 Facilitates BMSCs Osteoblastogenesis via ER Stress and mTOR Pathway.

 
 
 
 
 
 
 
 

Abstract


Emerging evidence indicates extensive oxidative stress is a consequence of obesity which impairs bone formation. Glutathione peroxidase 7 (GPX7) is a conserved endoplasmic reticulum (ER) retention protein, lacking of which causes accumulation of reactive oxygen species (ROS) and promotes adipogenesis. Since the imbalance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cell (BMSC) leads to severe bone diseases such as osteoporosis, it is critical to investigate the potential protective role of Gpx7 in osteogenesis. Here, we provide evidence that deficiency of Gpx7 reduces osteogenesis, but increases adipogenesis in both human BMSCs (hBMSCs) and mouse mesenchymal stem cell line. Interestingly, further studies indicate this defect can be alleviated by the ER stress antagonist, but not the ROS inhibitor, unveiling an unexpected finding that, unlike adipogenesis, lacking of Gpx7 inhibits osteogenesis mediating by induced ER stress instead of enhanced ROS. Furthermore, the mTOR signalling pathway is found down-regulation during osteogenic differentiation in Gpx7-deficient condition, which can be rescued by relief of ER stress. Taken together, for the first time we identify a novel function of Gpx7 in BMSCs osteogenic differentiation and indicate that Gpx7\xa0may protect against osteoporotic deficits in humans through ER stress and mTOR pathway interplay.

Volume None
Pages None
DOI 10.1111/jcmm.16974
Language English
Journal Journal of cellular and molecular medicine

Full Text