Journal of fish diseases | 2021

The N- and C-terminal carbohydrate recognition domains of galectin-9 from Carassius auratus contribute differently to its immunity functions to Aeromonas hydrophila and Staphylococcus aureus.

 
 
 
 
 
 
 
 
 

Abstract


Galectin-9, an important pathogen recognition receptor (PRR), could recognize and bind pathogen-associated molecular patterns (PAMPs) on the surface of invading microorganisms, initiating the innate immune responses. A galectin-9 was identified from Qihe crucian carp Carassius auratus and designated as CaGal-9. The predicted CaGal-9 protein contained two non-identical carbohydrate recognition domains (CRDs), namely, N-CRD and C-CRD. The recombinant proteins (rCaGal-9, rN-CRD and rC-CRD) were purified from Escherichia coli BL21 (DE3) and exhibited strong agglutinating activity with erythrocytes of rabbit. The haemagglutination was inhibited by D-galactose, α-lactose and N-acetyl-D-galactose. Results of microbial agglutination assay showed that three recombinant proteins agglutinated Gram-negative bacterium Aeromonas hydrophila and Gram-positive bacterium Staphylococcus aureus. With regard to the binding activity, each recombinant protein could bind to LPS, PGN and the examined microorganisms (A. hydrophila and S. aureus) with different binding affinities. The integrated analyses suggested that CaGal-9 with two CRD domains could play an important role in immune defence against pathogenic microorganisms for C. auratus.

Volume None
Pages None
DOI 10.1111/jfd.13497
Language English
Journal Journal of fish diseases

Full Text