Journal of Neurochemistry | 2021

Microglial phagocytosis of neurons in neurodegeneration, and its regulation

 
 
 
 
 
 

Abstract


There is growing evidence that excessive microglial phagocytosis of neurons and synapses contributes to multiple brain pathologies. RNA‐seq and genome‐wide association (GWAS) studies have linked multiple phagocytic genes to neurodegenerative diseases, and knock‐out of phagocytic genes has been found to protect against neurodegeneration in animal models, suggesting that excessive microglial phagocytosis contributes to neurodegeneration. Here, we review recent evidence that microglial phagocytosis of live neurons and synapses causes neurodegeneration in animal models of Alzheimer s disease and other tauopathies, Parkinson s disease, frontotemporal dementias, multiple sclerosis, retinal degeneration and neurodegeneration induced by ischaemia, infection or ageing. We also review factors regulating microglial phagocytosis of neurons, including: nucleotides, frackalkine, phosphatidylserine, calreticulin, UDP, CD47, sialylation, complement, galectin‐3, Apolipoprotein E, phagocytic receptors, Siglec receptors, cytokines, microglial epigenetics and expression profile. Some of these factors may be potential treatment targets to prevent neurodegeneration mediated by excessive microglial phagocytosis of live neurons and synapses.

Volume 158
Pages 621 - 639
DOI 10.1111/jnc.15327
Language English
Journal Journal of Neurochemistry

Full Text