The New phytologist | 2019

Contribution and consequences of xylem-transported CO2 assimilation for C3 plants.

 
 

Abstract


Traditionally, leaves were thought to be supplied with CO2 for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves through the bulk flow of water. However, little is known about the dynamics and proportion of xylem-transported CO2 that is assimilated, vs\xa0simply lost to transpiration. Cut leaves of Populus deltoides and Brassica napus were placed in either KCl or one of three [NaH13 CO3 ] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem-transported CO2 exiting the leaf across light and CO2 response curves in real-time using a tunable diode laser absorption spectroscope. The rates of assimilation and efflux of xylem-transported CO2 increased with increasing xylem [13 CO2 *] and transpiration. Under saturating irradiance, rates of assimilation using xylem-transported CO2 accounted for c. 2.5% of the total assimilation in both species in the highest [13 CO2 *]. The majority of xylem-transported CO2 is assimilated, and efflux is small compared to respiration. Assimilation of xylem-transported CO2 comprises a small portion of total photosynthesis, but may be more important when CO2 is limiting.

Volume None
Pages None
DOI 10.1111/nph.15907
Language English
Journal The New phytologist

Full Text