The New phytologist | 2019

Intraspecific divergence in floral-tube length promotes asymmetric pollen movement and reproductive isolation.

 
 
 

Abstract


The causative link between phenotypic divergence and reproductive isolation is an important but poorly understood part of ecological speciation. We studied the effects of floral-tube length variation on pollen placement/receipt positions and reproductive isolation. In a population of Lapeirousia anceps (Iridaceae) with bimodal floral-tube lengths, we labelled pollen of short- and long-tubed flowers with different color fluorescent nano-particles (quantum dots). This enabled us to map pollen placement by long- and short-tubed flowers on the only floral visitor, a long-proboscid fly. Furthermore, it allowed us to quantify pollen movement within and between floral-tube lengths. Short- and long-tubed flowers placed pollen on different parts of the pollinator, and long-tubed flowers placed more pollen per visit than short-tubed flowers. This resulted in assortative pollen receipt (most pollen received comes from the same phenotype) and strong but asymmetric reproductive isolation, where short-tubed plants are more reproductively isolated than long-tubed plants. These results suggest that floral-tube length divergence can promote mechanical isolation in plants through divergence in pollen placement sites on pollinators. Consequently, in concert with other reproductive isolation mechanisms, selection for differences in floral-tube length can play an important role in ecological speciation of plants. This article is protected by copyright. All rights reserved.

Volume None
Pages None
DOI 10.1111/nph.15971
Language English
Journal The New phytologist

Full Text