The New phytologist | 2019

Genome-wide analysis of MIKC-type MADS-box genes in wheat: pervasive duplications, functional conservation and putative neofunctionalization.

 
 
 
 
 

Abstract


Wheat (Triticum aestivum) is one of the most important crops worldwide. Given a growing global population coupled with increasingly challenging cultivation conditions, facilitating wheat breeding by fine-tuning important traits is of great importance. MADS-box genes are prime candidates for this, since they are involved in virtually all aspects of plant development. Here, we present a detailed overview of phylogeny and expression of 201 wheat MIKC-type MADS-box genes. Homoeolog retention is significantly above the average genome-wide retention rate for wheat genes, indicating that many MIKC-type homoeologs are functionally important and not redundant. Gene expression is generally in agreement with the expected subfamily-specific expression pattern, indicating broad conservation of function of MIKC-type genes during wheat evolution. We also find extensive expansion of some MIKC-type subfamilies, especially those potentially involved in adaptation to different environmental conditions like flowering time genes. Duplications are especially prominent in distal telomeric regions. A number of MIKC-type genes show novel expression patterns and respond to e.g. biotic stress, pointing towards neofunctionalization. We speculate that conserved, duplicated and neofunctionalized MIKC-type genes may have played an important role in the adaptation of wheat to a diversity of conditions, hence contributing to the importance of wheat as a global staple food. This article is protected by copyright. All rights reserved.

Volume None
Pages None
DOI 10.1111/nph.16122
Language English
Journal The New phytologist

Full Text