Journal of biomechanical engineering | 2019

Accurate and Efficient Plate and Rod Micro Finite Element Whole Bone Models Based on High-Resolution Peripheral Computed Tomography.

 
 
 
 
 
 
 
 
 
 

Abstract


The high-resolution peripheral quantitative computed tomography (HRpQCT) provides unprecedented visualization of bone microstructure and the basis for constructing patient-specific micro-finite element (µFE) models. Based on HRpQCT images, we have developed a plate rod µFE (PRµFE) method for whole bone segments using individual trabecula segmentation (ITS) and an adaptive cortical meshing technique. In contrast to the conventional voxel approach, the complex microarchitecture of the trabecular compartment is simplified into shell and beam elements based on the trabecular plate-and-rod configuration. Compared to voxel-based µFE models of µCT and mechanical testing, nonlinear analyses of stiffness and yield strength using the HRpQCT-based PRµFE models demonstrated high correlation and accuracy, indicating that the combination of segmented trabecular plate-rod morphology and adjusted cortical mesh adequately captures mechanics of the whole bone segment. Meanwhile, the PRµFE approach reduced model size by nearly 300-fold and shortened computation time for nonlinear analysis from days to within hours, permitting broader clinical application of HRpQCT-based nonlinear µFE modeling. Furthermore, the presented approach was tested using a subset of radius and tibia HRpQCT scans of patients with prior vertebral fracture from a previous study. Results indicated that yield strength for radius and tibia predicted by the PRµFE model was effective in discriminating vertebral fracture subjects from non-fractured controls. In conclusion, the PR µFE model of HRpQCT images accurately predicted mechanics for whole bone segments and can serve as a valuable clinical tool to evaluate musculoskeletal diseases.

Volume None
Pages None
DOI 10.1115/1.4042680
Language English
Journal Journal of biomechanical engineering

Full Text