Journal of biomechanical engineering | 2019

Computational modeling of human left ventricle to assess the role of trabeculae carneae on the diastolic and systolic functions.

 
 
 
 
 

Abstract


Trabeculae carneae are irregular structures that cover the endocardial surfaces of both ventricles and account for a significant portion of human ventricular mass. The role of trabeculae carneae in diastolic and systolic functions of the left ventricle (LV) is not well understood. Thus, the objective of this study was to investigate the functional role of trabeculae carneae in the LV. Finite element analyses of ventricular functions were conducted for three different models of human LV derived from high-resolution magnetic resonance imaging (MRI). The first model comprised trabeculae carneae and papillary muscles, while the second model had papillary muscles and partial trabeculae carneae, and the third model had a smooth endocardial surface. We customized these patient-specific models with myofiber architecture generated with a rule-based algorithm, diastolic material parameters using Fung strain energy function derived from bi-axial tests and adjusted with the empirical Klotz relationship, and myocardial contractility constants optimized for average normal ejection fraction of the human LV. Results showed that the partial trabeculae cutting model had enlarged end-diastolic volume, reduced wall stiffness and even increased end-systolic function, indicating that the absence of trabeculae carneae increased the compliance of the LV during diastole, while maintaining systolic function.

Volume None
Pages None
DOI 10.1115/1.4043831
Language English
Journal Journal of biomechanical engineering

Full Text