Journal of Mechanical Design | 2021

Double-Helix Linear Actuators

 
 
 
 
 
 

Abstract


\n Many robotic systems require linear actuation with high forces, large displacements, and compact profiles. This article presents a series of mechanisms, termed double-helix linear actuators (DHLAs), designed for this purpose. By rotating the fixed end of a double-helix linear actuator, its helix angle changes, displacing at the free end. This article proposes two concepts for DHLA designs, differing in their supporting structure, and derives kinematic and geometric models for both. Prototypes of each concept are presented, and for the more promising “continuous-rails” design, hardware tests are conducted that validate the actuator’s kinematic model and characterize its force transmission properties. The final prototypes can exert both tension and compression forces, can displace up to 75% of their total length, and show consistent trends for torque versus force load. These designs have the potential to overcome the force and displacement limitations of other linear actuators while simultaneously reducing size and weight.

Volume None
Pages 1-40
DOI 10.1115/1.4050739
Language English
Journal Journal of Mechanical Design

Full Text