Journal of Mechanisms and Robotics | 2021

Design and Bending Analysis of a Metamorphic Parallel Twisted-Scissor Mechanism

 
 

Abstract


\n The conventional scissor mechanism is used in modern engineering and robotic applications due to its metamorphic ability. The folding configuration provides space-saving and unfolding provides longer linear expansion capability. However, a conventional scissor suffers unexpected and uncontrolled large bending deformation due to low bending stiffness while unfolding configuration, which may damage its structure. It also has a sudden bending singularity during unfolding, which may also damage the actuator. These limitations impose a significant constraint on real-life applications such as foldable robot arms, space robot arms, and reconfigurable robots. In this paper, we proposed a multi-strands parallel twisted-scissor mechanism (PTSM) to enhance its usability. The PTSM is inspired by a rope structure and designed by introducing a metamorphic segment (MS) using the S-shaped linkage design approach to improve its bending stiffness without affecting conventional scissors’ fundamentals. The PTSM has a unique feature of several automatic-link locking mechanisms to avoid singularity without using additional sensors, mechanism, or control. We experimentally checked the proposed design’s functionality and its feasibility. We formulated a cantilever bending model for foldable PTSM with N metamorphic segments considering revolute joint clearance for bending estimation, experimentally verified, and analyzed the bending deformation in the X–Y and Y–Z planes. Also, it is compared with a conventional scissor. Finally, we found that PTSM is stronger than conventional scissor and can fold/unfold smoothly using a single linear actuator. PTSM can provide large linear displacement with small bending deformation without bending singularity.

Volume None
Pages 1-30
DOI 10.1115/1.4050813
Language English
Journal Journal of Mechanisms and Robotics

Full Text