Archive | 2021

Preliminary in-vivo imaging evaluation of patient-specific scatter-corrected digital chest tomosynthesis

 
 
 
 
 
 
 

Abstract


Purpose: Scatter reduction remains a challenge for chest tomosynthesis. The purpose of this study was to validate a lowdose patient-specific method of scatter correction in a large animal model and implement the technique in a human imaging study in a population with known lung lesions. Method: The porcine and human subjects were imaged with an experimental stationary digital chest tomosynthesis system. Full field projection images were acquired, as well as with a customized primary sampling device for sparse sampling of the primary signal. A primary sampling scatter correction algorithm was used to compute scatter from the primary beam information. Sparse scatter was interpolated and used to correct projections prior to reconstruction. Reconstruction image quality was evaluated over multiple acquisitions in the animal subject to quantify the impact of lung volume discrepancies between scans. Results: Variations in lung volume between the full field and primary sample projection images induced mild variation in computed scatter maps, due to acquisitions during separate breath holds. Reconstruction slice images from scatter corrected datasets including both similar and dissimilar breath holds were compared and found to have minimal differences. Initial human images are included. Conclusions: We have evaluated the prototype low-dose, patient-specific scatter correction in an in-vivo porcine model currently incorporated into a human imaging study. The PSSC technique was found to tolerate some lung volume variation between scans, as it has a minimal impact on reconstruction image quality. A human imaging study has been initiated and a reader comparison will determine clinical efficacy.

Volume 11595
Pages 1159524
DOI 10.1117/12.2582206
Language English
Journal None

Full Text