Archive | 2021

Methodology for the analysis of a thermo-mechanically deformed optical system

 
 
 
 
 
 
 
 
 
 

Abstract


The performance of as-built optical instruments strongly depends on thermal and structural loads, since these boundary conditions can affect the geometry of optical surfaces. Variations of temperature influence the volume, and the shape, of the structure proportionally to the coefficient of thermal expansion of the material, while mechanical loads, like gravity, may induce deformations on the optical elements according to the set of applied constraints. Those effects can introduce aberrations that degrade the performance of the optical system. Since software for optical and thermo-structural analysis are usually different, a coupling methodology between these two fields of physics is needed. This is a step-by-step procedure through many platforms. In this work, the procedure devised and used by the authors will be presented. At first, a thermo-mechanical analysis (depending on the loads involved) has to be performed, in order to obtain the final deformed geometry of the optical structure; COMSOL Multiphysics is the finite element solver (FEM) used for these analyses. Then an output data file, containing the coordinates of points belonging to the optical surface, can be generated. The output data are elaborated by a MATLAB routine that allows to convert the set of points into an n-th polynomial expression that best fits the surface data. The fitted polynomial surface is hence imported in ZEMAX ray-tracing software to study the optical performances of the system and the effects of thermo-mechanical loads.

Volume 11852
Pages 1185250 - 1185250-9
DOI 10.1117/12.2599824
Language English
Journal None

Full Text