Science | 2019

Observation of parity-time symmetry breaking in a single-spin system

 
 
 
 
 
 
 
 

Abstract


Breaking symmetry with single spins The energetics of quantum systems are typically described by Hermitian Hamiltonians. The exploration of non-Hermitian physics in classical parity-time (PT)–symmetric systems has provided fertile theoretical and experimental ground to develop systems exhibiting exotic behavior. Wu et al. now demonstrate that non-Hermitian physics can be found in a solid-state quantum system. They developed a protocol, termed dilation, which transformed a PT-symmetric Hamiltonian into a Hermitian one. This allowed them to investigate PT-symmetric physics with a single nitrogen-vacancy center in diamond. The results provide a starting point for exploiting and understanding the exotic properties of PT-symmetric Hamiltonians in quantum systems. Science, this issue p. 878 A single nitrogen-vacancy center in diamond is used to illustrate the breaking of parity-time symmetry in a quantum system. Steering the evolution of single spin systems is crucial for quantum computing and quantum sensing. The dynamics of quantum systems has been theoretically investigated with parity-time–symmetric Hamiltonians exhibiting exotic properties. Although parity-time symmetry has been explored in classical systems, its observation in a single quantum system remains elusive. We developed a method to dilate a general parity-time–symmetric Hamiltonian into a Hermitian one. The quantum state evolutions ranging from regions of unbroken to broken PT symmetry have been observed with a single nitrogen-vacancy center in diamond. Owing to the universality of the dilation method, our result provides a route for further exploiting and understanding the exotic properties of parity-time symmetric Hamiltonian in quantum systems.

Volume 364
Pages 878 - 880
DOI 10.1126/science.aaw8205
Language English
Journal Science

Full Text