Science Robotics | 2021

From collections of independent, mindless robots to flexible, mobile, and directional superstructures

 
 
 
 
 
 
 
 
 
 
 

Abstract


Self-organization of independent simple robots confined in a flexible scaffold gives rise to a mobile and flexible structure. A swarm of simple active particles confined in a flexible scaffold is a promising system to make mobile and deformable superstructures. These soft structures can perform tasks that are difficult to carry out for monolithic robots because they can infiltrate narrow spaces, smaller than their size, and move around obstacles. To achieve such tasks, the origin of the forces the superstructures develop, how they can be guided, and the effects of external environment, especially geometry and the presence of obstacles, need to be understood. Here, we report measurements of the forces developed by such superstructures, enclosing a number of mindless active rod-like robots, as well as the forces exerted by these structures to achieve a simple function, crossing a constriction. We relate these forces to the self-organization of the individual entities. Furthermore, and based on a physical understanding of what controls the mobility of these superstructures and the role of geometry in such a process, we devise a simple strategy where the environment can be designed to bias the mobility of the superstructure, giving rise to directional motion. Simple tasks—such as pulling a load, moving through an obstacle course, or cleaning up an arena—are demonstrated. Rudimentary control of the superstructures using light is also proposed. The results are of relevance to the making of robust flexible superstructures with nontrivial space exploration properties out of a swarm of simpler and cheaper robots.

Volume 6
Pages None
DOI 10.1126/scirobotics.abd0272
Language English
Journal Science Robotics

Full Text