Journal of Bacteriology | 2021

Edwardsiella piscicida Interferes with Classical Endocytic Trafficking and Replicates in a Specialized Replication-Permissive Niche in Nonphagocytic Cells

 
 
 
 
 
 
 

Abstract


E. piscicida is a facultative intracellular bacterium associated with septicemia and fatal infections in many animals, including fish and humans. However, little is known about its intracellular life, which is important for successful invasion of the host. ABSTRACT Edwardsiella piscicida is an intracellular pathogen within a broad spectrum of hosts. Essential to E. piscicida’s virulence is its ability to invade and replicate inside host cells, yet the survival mechanisms and the nature of the replicative compartment remain unknown. Here, we characterized its intracellular lifestyle in nonphagocytic cells and showed that the intracellular replication of E. piscicida in nonphagocytic cells is dependent on its type III secretion system (T3SS) but not its type VI secretion system. Following internalization, E. piscicida is contained in vacuoles that transiently mature into early endosomes but subsequently bypasses the classical endosome pathway and fusion with lysosomes, which depend on its T3SS. Following rapid escape from the degradative pathway, E. piscicida was found to create a specialized replication-permissive niche characterized by endoplasmic reticulum (ER) markers. Furthermore, we found that a T3SS effector, EseJ, is responsible for the intracellular replication of E. piscicida by preventing endosome/lysosome fusion. In vivo experiments also confirmed that EseJ is necessary for bacterial colonization by E. piscicida in the epithelial layer, followed by systemic dissemination in both zebrafish and mice. Thus, this work elucidates the tactics used by E. piscicida to survive and proliferate within host nonphagocytic cells. IMPORTANCE E. piscicida is a facultative intracellular bacterium associated with septicemia and fatal infections in many animals, including fish and humans. However, little is known about its intracellular life, which is important for successful invasion of the host. The present study is the first comprehensive characterization of E. piscicida’s intracellular lifestyle in host cells. Upon internalization, E. piscicida is transiently contained in Rab5-positive vacuoles, but the pathogen prevents further endosome maturation and fusion with lysosomes by utilizing a T3SS effector, EseJ. In addition, the bacterium creates a specialized replication niche for rapid growth via an interaction with the ER. Our study provides new insights into the strategies used by E. piscicida to successfully establish an intracellular lifestyle that contributes to its survival and dissemination during infection.

Volume 203
Pages None
DOI 10.1128/JB.00505-20
Language English
Journal Journal of Bacteriology

Full Text