Journal of Virology | 2019

Heterogeneous Nuclear Ribonucleoprotein A1 and Lamin A/C Modulate Nucleocytoplasmic Shuttling of Avian Reovirus p17

 
 
 
 
 
 
 

Abstract


Avian reoviruses (ARVs) cause considerable economic losses in the poultry industry. The ARV p17 protein continuously shuttles between the nucleus and the cytoplasm to regulate several cellular signaling pathways and interacts with several cellular proteins to cause translation shutoff, cell cycle arrest, and autophagosome formation, all of which enhance virus replication. To date the mechanisms underlying nucleocytoplasmic shuttling of p17 remain largely unknown. Here we report that hnRNP A1 and lamin A/C serve as carrier and mediator proteins to modulate nucleocytoplasmic shuttling of p17. The formation of p17-hnRNP A1-transportin 1 carrier-cargo complex is required to modulate p17 nuclear import. Furthermore, we have identified an NES-containing nucleocytoplasmic shuttling domain (aa 19 to 40) of p17 that is critical for binding to hnRNP A1 and for nucleocytoplasmic shuttling of p17. This study provides novel insights into how hnRNP A1 and lamin A/C modulate nucleocytoplasmic shuttling of the ARV p17 protein. ABSTRACT Avian reovirus (ARV) p17 protein continuously shuttles between the nucleus and the cytoplasm via transcription-dependent and chromosome region maintenance 1 (CRM1)-independent mechanisms. Nevertheless, whether cellular proteins modulate nucleocytoplasmic shuttling of p17 remains unknown. This is the first report that heterogeneous nuclear ribonucleoprotein (hnRNP) A1 serves as a carrier protein to modulate nucleocytoplasmic shuttling of p17. Both in vitro and in vivo studies indicated that direct interaction of p17 with hnRNP A1 maps within the amino terminus (amino acids [aa] 19 to 40) of p17 and the Gly-rich region of the C terminus of hnRNP A1. Furthermore, our results reveal that the formation of p17-hnRNP A1-transportin 1 carrier-cargo complex is required to modulate p17 nuclear import. Utilizing sequence and mutagenesis analyses, we have identified nuclear export signal (NES) 19LSLRELAI26 of p17. Mutations of these residues causes a nuclear retention of p17. In this work, we uncovered that the N-terminal 21 amino acids (aa 19 to 40) of p17 that comprise the NES can modulate both p17 and hnRNP A1 interaction and nucleocytoplasmic shuttling of p17. In this work, the interaction site of p17 with lamin A/C was mapped within the amino terminus (aa 41 to 60) of p17 and p17 colocalized with lamin A/C at the nuclear envelope. Knockdown of hnRNP A1 or lamin A/C led to inhibition of nucleocytoplasmic shuttling of p17 and reduced virus yield. Collectively, the results of this study provide mechanistic insights into hnRNP A1 and lamin A/C-modulated nucleocytoplasmic shuttling of the ARV p17 protein. IMPORTANCE Avian reoviruses (ARVs) cause considerable economic losses in the poultry industry. The ARV p17 protein continuously shuttles between the nucleus and the cytoplasm to regulate several cellular signaling pathways and interacts with several cellular proteins to cause translation shutoff, cell cycle arrest, and autophagosome formation, all of which enhance virus replication. To date the mechanisms underlying nucleocytoplasmic shuttling of p17 remain largely unknown. Here we report that hnRNP A1 and lamin A/C serve as carrier and mediator proteins to modulate nucleocytoplasmic shuttling of p17. The formation of p17-hnRNP A1-transportin 1 carrier-cargo complex is required to modulate p17 nuclear import. Furthermore, we have identified an NES-containing nucleocytoplasmic shuttling domain (aa 19 to 40) of p17 that is critical for binding to hnRNP A1 and for nucleocytoplasmic shuttling of p17. This study provides novel insights into how hnRNP A1 and lamin A/C modulate nucleocytoplasmic shuttling of the ARV p17 protein.

Volume 93
Pages None
DOI 10.1128/JVI.00851-19
Language English
Journal Journal of Virology

Full Text