Lithosphere | 2019

Towards a clarification of the provenance of Cenozoic sediments in the northern Qaidam Basin

 
 
 
 
 
 
 

Abstract


Determining the provenance of sedimentary basin fill in the northern Qaidam Basin is a key step toward understanding the sedimentary system dynamics and mountain-building processes of the surrounding orogenic belts in Tibet. The exceptionally thick (average of 6–8 km) Cenozoic fluvio-lacustrine deposits in the northern Qaidam Basin were once thought to have been eroded from the nearby northern Qaidam Basin margin and the southern Qilian Shan and to reflect the prolonged thrust-related exhumation of these orogenic belts. However, several recent studies, based mainly on paleocurrent and detrital zircon U-Pb age data, suggested that they were derived from the distant East Kunlun Shan to the south, or the Qimen Tagh to the southwest (at least 200 and 350 km from the northern Qaidam Basin, respectively). That model assumed that the East Kunlun Shan and Qimen Tagh formed significant topographic barriers during the earliest sedimentation of Cenozoic strata (e.g., the Lulehe Formation) in the northern Qaidam Basin. Therefore, the tectonic significance of the provenance of the Lulehe Formation remains a fundamental problem in understanding the postcollisional uplift history of the northern Tibetan Plateau. To address this issue, we conducted sedimentological and paleocurrent analyses of the Lulehe Formation and detrital zircon U-Pb dating of Mesozoic strata in the northern Qaidam Basin. The results, in combination with existing paleocurrent and seismic reflection data, collectively indicate that although the source area cannot be specified by matching zircon U-Pb ages in sedimentary rocks with crystalline basement source rocks, other evidence points consistently to a unified proximal northerly source area (the northern Qaidam Basin margin and the southern Qilian Shan). Our results emphasize that noncrystalline basement rocks (e.g., Mesozoic sedimentary rocks) in fold-and-thrust belts should be taken into consideration when seeking potential source areas by correlating zircon U-Pb ages of siliciclastic detritus with related basement rocks. In addition, this study strongly supports the claim that variations in the proportions of age populations should be used with caution when determining source terrane by comparisons of age distributions. LITHOSPHERE; v. 11; no. 2; p. 252–272; GSA Data Repository Item 2019032 | Published online 20 December 2018 https://doi.org/10.1130/L1037.1

Volume 11
Pages 252-272
DOI 10.1130/L1037.1
Language English
Journal Lithosphere

Full Text