Lithosphere | 2019

Temporal and spatial variations in magmatism and transpression in a Cretaceous arc, Median Batholith, Fiordland, New Zealand

 
 
 
 
 
 
 

Abstract


We investigated the interplay between deformation and pluton emplacement with the goal of providing insights into the role of transpression and arc magmatism in forming and modifying continental arc crust. We present 39 new laser-ablation–split-stream–inductively coupled plasma–mass spectrometry (LASS-ICP-MS) and secondary ion mass spectrometry (SIMS) 206Pb/238U zircon and titanite dates, together with titanite geochemistry and temperatures from the lower and middle crust of the Mesozoic Median Batholith, New Zealand, to (1) constrain the timing of Cretaceous arc magmatism in the Separation Point Suite, (2) document the timing of titanite growth in lowand high-strain deformational fabrics, and (3) link spatial and temporal patterns of lithospheric-scale transpressional shear zone development to the Cretaceous arc flare-up event. Our zircon results reveal that Separation Point Suite plutonism lasted from ca. 129 Ma to ca. 110 Ma in the middle crust of eastern and central Fiordland. Deformation during this time was focused into a 20-km-wide, arc-parallel zone of deformation that includes previously unreported segments of a complex shear zone that we term the Grebe shear zone. Early deformation in the Grebe shear zone involved development of low-strain fabrics with shallowly plunging mineral stretching lineations from ca. 129 to 125 Ma. Titanites in these rocks are euhedral, are generally aligned with weak subsolidus fabrics, and give rock-average temperatures ranging from 675 °C to 700 °C. We interpret them as relict magmatic titanites that grew prior to low-strain fabric development. In contrast, deformation from ca. 125 to 116 Ma involved movement along subvertical, mylonitic shear zones with moderately to steeply plunging mineral stretching lineations. Titanites in these shear zones are anhedral grains/aggregates that are aligned within mylonitic fabrics and have rock-average temperatures ranging from ~610 °C to 700 °C. These titanites are most consistent with (re)crystallization in response to deformation and/or metamorphic reactions during amphibolite-facies metamorphism. At the orogen scale, spatial and temporal patterns indicate that the Separation Point Suite flare-up commenced during low-strain deformation in the middle crust (ca. 129–125 Ma) and peaked during high-strain, transpressional deformation (ca. 125–116 Ma), during which time the magmatic arc axis widened to 70 km or more. We suggest that transpressional deformation during the arc flare-up event was an important process in linking melt storage regions and controlling the distribution and geometry of plutons at mid-crustal levels. LITHOSPHERE; v. 11; no. 5; p. 652–682; GSA Data Repository Item 2019309 | Published online 6 September 2019 https:// doi .org /10 .1130 /L1073 .1

Volume 11
Pages 652-682
DOI 10.1130/l1073.1
Language English
Journal Lithosphere

Full Text