Proceedings of the Steklov Institute of Mathematics | 2021

On Finite Simple Groups of Exceptional Lie Type over Fields of Different Characteristics with Coinciding Prime Graphs

 

Abstract


Suppose that\xa0 $$G$$ 𝐺 is a finite group, $$\\pi(G)$$ πœ‹ 𝐺 is the set of prime divisors of its order, and $$\\omega(G)$$ πœ” 𝐺 is the set of orders of its elements. A graph with the following adjacency relation is defined on\xa0 $$\\pi(G)$$ πœ‹ 𝐺 : different vertices\xa0 $$r$$ π‘Ÿ and\xa0 $$s$$ 𝑠 from\xa0 $$\\pi(G)$$ πœ‹ 𝐺 are adjacent if and only if\xa0 $$rs\\in\\omega(G)$$ π‘Ÿ 𝑠 πœ” 𝐺 . This graph is called the Gruenberg–Kegel graph or the prime graph of\xa0 $$G$$ 𝐺 and is denoted by\xa0 $$GK(G)$$ 𝐺 𝐾 𝐺 . In A.V.\u2009Vasil’ev’s Question\xa016.26 from The Kourovka Notebook , it is required to describe all pairs of nonisomorphic finite simple nonabelian groups with identical Gruenberg–Kegel graphs. M.\xa0Hagie (2003) and M.A.\xa0Zvezdina (2013) gave such a description in the case where one of the groups coincides with a sporadic group and an alternating group, respectively. The author (2014) solved this question for pairs of finite simple groups of Lie type over fields of the same characteristic. In the present paper, we prove the following theorem.\xa0\xa0 Theorem. \xa0Let\xa0 $$G$$ 𝐺 be a finite simple group of exceptional Lie type over a field with\xa0 $$q$$ π‘ž elements, and let\xa0 $$G_{1}$$ subscript 𝐺 1 be a finite simple group of Lie type over a field with\xa0 $$q$$ π‘ž elements nonisomorphic to\xa0 $$G$$ 𝐺 , where\xa0 $$q$$ π‘ž and\xa0 $$q_{1}$$ subscript π‘ž 1 are coprime. If $$GK(G)=GK(G_{1})$$ 𝐺 𝐾 𝐺 𝐺 𝐾 subscript 𝐺 1 , then one of the following holds: $$(1)\\ \\{G,G_{1}\\}=\\{G_{2}(3),A_{1}(13)\\}$$ 1 𝐺 subscript 𝐺 1 subscript 𝐺 2 3 subscript 𝐴 1 13 ;\xa0\xa0 $$(2)\\ \\{G,G_{1}\\}=\\{{{}^{2}}F_{4}(2)^{\\prime},A_{3}(3)\\}$$ 2 𝐺 subscript 𝐺 1 superscript subscript 𝐹 4 2 superscript 2 β€² subscript 𝐴 3 3 ;\xa0\xa0 $$(3)\\ \\{G,G_{1}\\}=\\{{{}^{3}}D_{4}(q),A_{2}(q_{1})\\}$$ 3 𝐺 subscript 𝐺 1 superscript subscript 𝐷 4 3 π‘ž subscript 𝐴 2 subscript π‘ž 1 , where $$(q_{1}-1)_{3}\\neq 3$$ subscript subscript π‘ž 1 1 3 3 and $$q_{1}+1\\neq 2^{k_{1}}$$ subscript π‘ž 1 1 superscript 2 subscript π‘˜ 1 ;\xa0\xa0 $$(4)\\ \\{G,G_{1}\\}=\\{{{}^{3}}D_{4}(q),A_{4}^{\\pm}(q_{1})\\}$$ 4 𝐺 subscript 𝐺 1 superscript subscript 𝐷 4 3 π‘ž superscript subscript 𝐴 4 plus-or-minus subscript π‘ž 1 , where $$(q_{1}\\mp 1)_{5}\\neq 5$$ subscript minus-or-plus subscript π‘ž 1 1 5 5 ;\xa0\xa0 $$(5)\\ \\{G,G_{1}\\}=\\{G_{2}(q),G_{2}(q_{1})\\}$$ 5 𝐺 subscript 𝐺 1 subscript 𝐺 2 π‘ž subscript 𝐺 2 subscript π‘ž 1 , where\xa0 $$q$$ π‘ž and\xa0 $$q_{1}$$ subscript π‘ž 1 are not powers of\xa03;\xa0\xa0 $$(6)\\ \\{G,G_{1}\\}$$ 6 𝐺 subscript 𝐺 1 is one of the pairs $$\\{F_{4}(q),F_{4}(q_{1})\\}$$ subscript 𝐹 4 π‘ž subscript 𝐹 4 subscript π‘ž 1 , $$\\{{{}^{3}}D_{4}(q),{{}^{3}}D_{4}(q_{1})\\}$$ superscript subscript 𝐷 4 3 π‘ž superscript subscript 𝐷 4 3 subscript π‘ž 1 , and $$\\{E_{8}(q),E_{8}(q_{1})\\}$$ subscript 𝐸 8 π‘ž subscript 𝐸 8 subscript π‘ž 1 .\xa0\xa0The existence of pairs of groups in statements (3)–(6) is unknown.

Volume 313
Pages S228-S240
DOI 10.1134/S0081543821030238
Language English
Journal Proceedings of the Steklov Institute of Mathematics

Full Text