Journal for Immunotherapy of Cancer | 2021

Leveraging the Treg-intrinsic CTLA4–PKCη signaling pathway for cancer immunotherapy

 
 
 
 
 
 

Abstract


Background Our previous studies revealed a critical role of a novel CTLA4-protein kinase C-eta (PKCη) signaling axis in mediating the suppressive activity of regulatory T cells (Tregs) in antitumor immunity. These studies have employed adoptive transfer of germline PKCη-deficient (Prkch−/−) Tregs into Prkch+/+ mice prior to tumor implantation. Here, we extended these findings into a biologically and clinically more relevant context. Methods We have analyzed the role of PKCη in antitumor immunity and the tumor microenvironment (TME) in intact tumor-bearing mice with Treg-specific or CD8+ T cell-specific Prkch deletion, including in a therapeutic model of combinatorial treatment. In addition to measuring tumor growth, we analyzed the phenotype and functional attributes of tumor-infiltrating immune cells, particularly Tregs and dendritic cells (DCs). Results Using two models of mouse transplantable cancer and a genetically engineered autochthonous hepatocellular carcinoma (HCC) model, we found, first, that mice with Treg-specific Prkch deletion displayed a significantly reduced growth of B16–F10 melanoma and TRAMP-C1 adenocarcinoma tumors. Tumor growth reduction was associated with a less immunosuppressive TME, indicated by increased numbers and function of tumor-infiltrating CD8+ effector T cells and elevated expression of the costimulatory ligand CD86 on intratumoral DCs. In contrast, CD8+ T cell-specific Prkch deletion had no effect on tumor growth or the abundance and functionality of CD8+ effector T cells, consistent with findings that Prkch−/− CD8+ T cells proliferated normally in response to in vitro polyclonal or specific antigen stimulation. Similar beneficial antitumor effects were found in mice with germline or Treg-specific Prkch deletion that were induced to develop an autochthonous HCC. Lastly, using a therapeutic model, we found that monotherapies consisting of Treg-specific Prkch deletion or vaccination with irradiated Fms-like tyrosine kinase 3 ligand (Flt3L)-expressing B16–F10 tumor cells post-tumor implantation significantly delayed tumor growth. This effect was more pronounced in mice receiving a combination of the two immunotherapies. Conclusion These findings demonstrate the potential utility of PKCη inhibition as a viable clinical approach to treat patients with cancer, especially when combined with adjuvant therapies.

Volume 9
Pages None
DOI 10.1136/jitc-2021-002792
Language English
Journal Journal for Immunotherapy of Cancer

Full Text