Canadian journal of microbiology | 2021

Comparative Genomic Analyses of the β-lactamase (blaCMY-42) Encoding Plasmids Isolated from Wastewater Treatment Plants in Canada.

 
 
 
 
 
 

Abstract


Wastewater treatment plants are useful environments for investigating the occurrence, diversity, and evolution of plasmids encoding clinically relevant antibiotic resistance genes. Our objective was to isolate and sequence plasmids encoding meropenem resistance from bacterial hosts within Canadian WWTPs. We used two enrichment culture approaches for primary plasmid isolation, followed by screening of antibiotic resistance, conjugative mobility, and stability in enteric bacteria. Isolated plasmids were sequenced using Illumina MiSeq and Sanger sequencing methods. Bioinformatics analyses resolved a multi-resistance IncF/MOBF12 plasmid, pFEMG (209,357 bp), harbouring resistance genes to beta-lactam (blaCMY-42, blaTEM-1β, and blaNDM-5), macrolide (mphA-mrx-mphR), tetracycline (tetR-tetB-tetC-tetD), trimethoprim (dfrA12), aminoglycoside (aadA2), and sulfonamide (sul1) antibiotic classes. We also isolated an IncI1/MOBP12 plasmid pPIMR (172,280 bp), carrying similar beta-lactamase and a small multidrug efflux resistance gene cluster (blaCMY-42-blc-sugE) to pFEMG. The co-occurrence of different ARGs within a single 24,552 bp cluster in pFEMG - intersperced with transposons, insertion sequence elements, and a class 1 integron - maybe of significant interest to human and veterinary medicine. Additionally, the presence of conjugative and plasmid maintenance genes in the studied plasmids corresponds to the observed high conjugative transfer frequencies and stable maintenance. Extensive investigation is required to further understand the fitness trade offs of plasmids having differing types of conjugative transfer and maintenance modules.

Volume None
Pages None
DOI 10.1139/cjm-2021-0012
Language English
Journal Canadian journal of microbiology

Full Text