Modern Physics Letters B | 2021

Numerical simulation for coupled nonlinear Schrödinger–Korteweg–de Vries and Maccari systems of equations

 
 
 

Abstract


The primary goal of this paper is to seek solutions to the coupled nonlinear partial differential equations (CNPDEs) by the use of q-homotopy analysis transform method (q-HATM). The CNPDEs considered are the coupled nonlinear Schrödinger–Korteweg–de Vries (CNLS-KdV) and the coupled nonlinear Maccari (CNLM) systems. As a basis for explaining the interactive wave propagation of electromagnetic waves in plasma physics, Langmuir waves and dust-acoustic waves, the CNLS-KdV model has emerged as a model for defining various types of wave phenomena in mathematical physics, and so forth. The CNLM model is a nonlinear system that explains the dynamics of isolated waves, restricted in a small part of space, in several fields like nonlinear optics, hydrodynamic and plasma physics. We construct the solutions (bright soliton) of these models through q-HATM and present the numerical simulation in form of plots and tables. The solutions obtained by the suggested approach are provided in a refined converging series. The outcomes confirm that the proposed solutions procedure is highly methodological, accurate and easy to study CNPDEs.

Volume None
Pages 2150339
DOI 10.1142/S0217984921503395
Language English
Journal Modern Physics Letters B

Full Text