International Journal of Modern Physics E | 2021

Study of nonlocality effects in direct capture reactions with Lagrange-mesh R-matrix method

 
 
 

Abstract


We apply the Lagrange-mesh [Formula: see text]-matrix method to calculate the [Formula: see text]-factor for the [Formula: see text]C[Formula: see text]N and [Formula: see text]O[Formula: see text]F direct radiative capture reactions. By comparing the astrophysical [Formula: see text]-factors calculated with nonlocal and local potentials, we investigate the nonlocality effects coming from the nuclear potentials in the direct capture reactions. Our calculations are in good agreement with the experimental data and indicate a nonnegligible difference in the results of local and nonlocal potentials. The use of small diffuseness narrow potentials also provides a remarkably good fit in the case with multiple broad resonances. Our findings suggest that the nonlocal potential improves the calculated results although the difference between the local and nonlocal potentials is smaller than uncertainties from other sources. We propose the nonlocality potential should be used in the potential model calculation of future astrophysics rates evaluation.

Volume None
Pages None
DOI 10.1142/S0218301321500798
Language English
Journal International Journal of Modern Physics E

Full Text