Surface Review and Letters | 2021

NANOWIRE OXIDE FILM FOR LOW-TEMPERATURE ALUMINIZED 20 STEEL BY THERMAL OXIDATION

 
 
 
 
 

Abstract


An aluminized coating for low-carbon steel with good corrosion and wear resistance was first prepared through low-temperature pack aluminization. Then, the low-temperature-aluminized steel substrate was subjected to thermal oxidation in air. The phase composition, surface morphology, roughness, and elemental distribution of the aluminized carbon steel both before and after thermal oxidation were analyzed through X-ray diffraction spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion resistance and wear resistance of the original carbon steel substrate, aluminized carbon steel, and oxidized carbon steel were tested. Results showed that nanowires composed of iron oxide and alumina formed in situ on the top layer of the aluminized carbon steel. The corrosion resistance and wear resistance of the low-carbon steel with the nanowire oxide coating were better than those of the original carbon steel and aluminized carbon steel because the in-situ nanowire oxide film improved the density of the aluminized coating.

Volume None
Pages 2150026
DOI 10.1142/S0218625X21500268
Language English
Journal Surface Review and Letters

Full Text