International Journal of Modern Physics B | 2021

Thermal transport of hybrid nanofluids with entropy generation: A numerical simulation

 
 
 
 

Abstract


In this research, thermal radiation, entropy generation and variable thermal conductivity effects on hybrid nanofluids by moving sheet are analyzed. The liquid is placed by stretchable flat wall that is flowing in a nonlinear pattern. Thermal conductivity changes with temperature governed by thermal radiation and MHD is incorporated. Approximations of boundary layer correspond to a set of PDEs which are then changed into ODEs by considering suitable variables. The resulting ODEs are solved using the bvp4c method. The implication with considerable physical characteristics on temperature, entropy generation and velocity profile is graphically represented and numerically discussed. Entropy generation increases for increasing Reynolds number, velocity slip parameter, Brinkman number and magnetic parameter. Scientists have recently established a rising interest in the importance of nanoparticles due to their numerous technical, industrial and commercial uses. The provided insights can be used in extrusion application areas, macromolecules, biomimetic systems, energy production and industrial process improvements.

Volume None
Pages None
DOI 10.1142/s0217979221502180
Language English
Journal International Journal of Modern Physics B

Full Text