International Journal of Geometric Methods in Modern Physics | 2021

Cosmological models of generalized ghost pilgrim dark energy (GGPDE) in the gravitation theory of Saez–Ballester

 
 
 

Abstract


In this paper, we study the mechanism of the cosmic model in the presence of generalized ghost pilgrim dark energy (GGPDE) and matter in locally rotationally symmetric (LRS) Bianchi type-I space-time by the utilization of new holographic DE in Saez–Ballester theory. Here, we discuss all the data for three scenarios, the first is supernovae type-Ia union data, the second is SN Ia data in combination with baryon acoustic oscillation and cosmic microwave background observations and the third is a combination with observational Hubble data and joint light-curve analysis observations. From this, we get a model of our universe, where transit state exists from deceleration to acceleration phase. Here, we have observed that the results yielded by cosmological parameters like [Formula: see text] (energy density), equation of state [Formula: see text], squared speed of sound [Formula: see text] and [Formula: see text]–[Formula: see text] are compatible with the recent observations. The [Formula: see text]–[Formula: see text] trajectories lie in both thawing and freezing regions and the correspondence of the quintessence field with GGPDE is also discussed. Some physical aspects of the GGPDE models are mainly highlighted.

Volume None
Pages None
DOI 10.1142/s0219887821502212
Language English
Journal International Journal of Geometric Methods in Modern Physics

Full Text