2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA) | 2019

Efficient Invisible Speculative Execution through Selective Delay and Value Prediction

 
 
 
 
 

Abstract


Speculative execution, the base on which modern high-performance general-purpose CPUs are built on, has recently been shown to enable a slew of security attacks. All these attacks are centered around a common set of behaviors: During speculative execution, the architectural state of the system is kept unmodified, until the speculation can be verified. In the event that a misspeculation occurs, then anything that can affect the architectural state is reverted (squashed) and re-executed correctly. However, the same is not true for the microarchitectural state. Normally invisible to the user, changes to the microarchitectural state can be observed through various side-channels, with timing differences caused by the memory hierarchy being one of the most common and easy to exploit. The speculative side-channels can then be exploited to perform attacks that can bypass software and hardware checks in order to leak information. These attacks, out of which the most infamous are perhaps Spectre and Meltdown, have led to a frantic search for solutions. In this work, we present our own solution for reducing the microarchitectural state-changes caused by speculative execution in the memory hierarchy. It is based on the observation that if we only allow accesses that hit in the L1 data cache to proceed, then we can easily hide any microarchitectural changes until after the speculation has been verified. At the same time, we propose to prevent stalls by value predicting the loads that miss in the L1. Value prediction, though speculative, constitutes an invisible form of speculation, not seen outside the core. We evaluate our solution and show that we can prevent observable microarchitectural changes in the memory hierarchy while keeping the performance and energy costs at 11% and 7%, respectively. In comparison, the current state of the art solution, InvisiSpec, incurs a 46% performance loss and a 51% energy increase.

Volume None
Pages 723-735
DOI 10.1145/3307650.3322216
Language English
Journal 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA)

Full Text