Proceedings of the 28th ACM International Conference on Information and Knowledge Management | 2019

Learning to Predict Human Stress Level with Incomplete Sensor Data from Wearable Devices

 
 
 
 
 
 

Abstract


Stress is a common problem in modern life that can bring both psychological and physical disorder. Wearable sensors are commonly used to study the relationship between physical records and mental status. Although sensor data generated by wearable devices provides an opportunity to identify stress in people for predictive medicine, in practice, the data are typically complicated and vague and also often fragmented. In this paper, we propose DataCompletion with Diurnal Regularizers (DCDR) and TemporallyHierarchical Attention Network (THAN) to address the fragmented data issue and predict human stress level with recovered sensor data. We model fragmentation as a sparsity issue. The nuclear norm minimization method based on the low-rank assumption is first applied to derive unobserved sensor data with diurnal patterns of human behaviors. A hierarchical recurrent neural network with the attention mechanism then models temporally structural information in the reconstructed sensor data, thereby inferring the predicted stress level. Data for this study were from 75 undergraduate students (taken from a sample of a larger study) who provided sensor data from smart wristbands. They also completed weekly stress surveys as ground-truth labels about their stress levels. This survey lasted 12 weeks and the sensor records are also in this period. The experimental results demonstrate that our approach significantly outperforms conventional methods in both data completion and stress level prediction. Moreover, an in-depth analysis further shows the effectiveness and robustness of our approach.

Volume None
Pages None
DOI 10.1145/3357384.3357831
Language English
Journal Proceedings of the 28th ACM International Conference on Information and Knowledge Management

Full Text