Annual review of neuroscience | 2019

Glia-Neuron Interactions in Caenorhabditis elegans.

 
 

Abstract


Glia are abundant components of animal nervous systems. Recognized 170 years ago, concerted attempts to understand these cells began only recently. From these investigations glia, once considered passive filler material in the brain, have emerged as active players in neuron development and activity. Glia are essential for nervous system function, and their disruption leads to disease. The nematode Caenorhabditis elegans possesses glial types similar to vertebrate glia, based on molecular, morphological, and functional criteria, and has become a powerful model in which to study glia and their neuronal interactions. Facile genetic and transgenic methods in this animal allow the discovery of genes required for glial functions, and effects of glia at single synapses can be monitored by tracking neuron shape, physiology, or animal behavior. Here, we review recent progress in understanding glia-neuron interactions in C. elegans. We highlight similarities with glia in other animals, and suggest conserved emerging principles of glial function. Expected final online publication date for the Annual Review of Neuroscience Volume 42 is July 8, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Volume None
Pages None
DOI 10.1146/annurev-neuro-070918-050314
Language English
Journal Annual review of neuroscience

Full Text