American journal of physiology. Cell physiology | 2021

Drivers of dynamic intra-tumor heterogeneity and phenotypic plasticity.

 
 

Abstract


Cancer is a clonal disease, i.e. all tumor cells within a malignant lesion trace their lineage back to a precursor somatic cell that acquired oncogenic mutations during development and aging. And yet, those tumor cells tend to have genetic and non-genetic variations among themselves - which is denoted as intra-tumor heterogeneity. While some of these variations are inconsequential, others tend to contribute to cell state transition and phenotypic heterogeneity, providing a substrate for somatic evolution. Tumor cell phenotypes can dynamically change under the influence of genetic mutations, epigenetic modifications, and microenvironmental contexts. While epigenetic and microenvironmental changes are adaptive, genetic mutations are usually considered permanent. Emerging reports suggest that certain classes of genetic alterations show extensive reversibility in tumors in clinically relevant timescales, contributing as major drivers of dynamic intra-tumor heterogeneity and phenotypic plasticity. Dynamic heterogeneity and phenotypic plasticity can confer resistance to treatment, promote metastasis and enhance evolvability in cancer. Here we first highlight recent efforts to characterize intra-tumor heterogeneity at genetic, epigenetic, and microenvironmental levels. We then discuss phenotypic plasticity and cell state transition by tumor cells, under the influence of genetic and non-genetic determinants and their clinical significance in classification of tumors and therapeutic decision-making.

Volume None
Pages None
DOI 10.1152/ajpcell.00575.2020
Language English
Journal American journal of physiology. Cell physiology

Full Text